

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

FUDMA International Journal of Social Sciences (FUDIJOSS), Volume 5, No. 2, September, 2025

A Publication of The Faculty of Social Sciences, Federal University Dutsin-Ma, Katsina State, Nigeria

ISSN: 2735-9522 (Print) 2735-9530 (Online)

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

EDITORIAL BOARD

Editor-in-Chief: Prof. Martins Iyoboyi **Editor:** Dr. Abdulsalam A. Sikiru

Managing Editor:Dr. Isaac I. AkuvaBusiness Editor:Dr. Badiru Abdulahi

Associate Editor:
Associate Editor:
Dr. Anifat Abdurraheem
Associate Editor:
Dr. Bem Elijah Tativ
Editorial Secretary:
Dr. Simon O. Obadahun

ADVISORY BOARD

Prof. Dejo Abdulrahman (Usmanu Danfodiyo University, Sokoto, Nigeria)

Prof. A.O. Olutayo (University of Ibadan, Nigeria)

Prof. Jacob I. Yecho (Federal University Dutsin-Ma Katsina State Nigeria)

Prof. Daud Mustafa (Federal University Dutsin-Ma Katsina State Nigeria)

Prof. Mary Agbo (Federal University Dutsin-Ma Katsina State Nigeria)

Prof. Adagba Okpaga (Benue State University, Nigeria)

Prof. Adejo Odo (Ahmadu Bello University, Zaria, Nigeria)

Prof. Rhoda Mundi (University of Abuja, Nigeria)

Prof. Marlize Rabe (University of South Africa, Pretoria, South Africa)

Prof. Alo Olubunmi (Federal University Wukari, Nigeria)

Prof. Chika Umar Aliyu (Usmanu Danfodiyo University, Sokoto, Nigeria)

Prof. Muhammad Sani Badayi (Bayero University, Kano, Nigeria)

Prof. Muhammad M. Usman (Ahmadu Bello University, Zaria, Nigeria)

Prof. P.A.O. Odjugo (University of Benin, Nigeria)

Prof. M. Mamman (Ahmadu Bello University, Zaria, Nigeria)

Prof. E.O. Iguisi (Ahmadu Bello University Zaria, Nigeria)

Prof. Aloysius Okolie (University of Nigeria, Nsuka, Nigeria)

Prof. Dung Pam Sha (University of Jos, Nigeria)

Prof. A/Razak Nor Azam (Universiti Utara, Malaysia)

Prof. A/Razak Na'Allah (University of Abuja, Nigeria)

Prof. B. Tanimu (Ahmadu Bello University, Zaria, Nigeria)

Prof. A. Jacob (Ahmadu Bello University, Zaria, Nigeria)

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

EDITORIAL AIM

FUDMA International Journal of Social Sciences (FUDIJOSS) is a bi-annual journal published by the Faculty of Social Sciences, Federal University Dutsin-Ma, Katsina State, Nigeria. FUDIJOSS is intended for scholars who wish to report results of completed or ongoing research, book review, review of the literature and discussions of theoretical issues or policy in all areas of Economics, Geography, Regional Planning, Political Sciences, Sociology, Demography, GenderStudies, and Management Sciences. Therefore, the primary objective of this journal is to provide a forum for the exchange of ideas across disciplines and academic orientations in the social sciences, and other related disciplines.

EDITORIAL POLICY

Manuscripts submitted for publication in FUDIJOSS are considered on the understanding that they are not under consideration for publication elsewhere, and have not already been published. The publishers of FUDIJOSS do not accept responsibility for the accuracy of the data presented in the articles or any consequences that may arise from their use. Opinions expressed in articles published by FUDIJOSS are solely those of the authors.

AUTHOR GUIDELINES

Submission to FUDMA International Journal of Social Sciences (FUDIJOSS)

Articles submitted to FUDIJOSS should be written in English Language (a consistent use of US or UK grammar and spelling) and should normally be between three thousand (3,000) to eight thousand (8,000) words (including all elements, abstract, references). If English is not theauthor's mother tongue, please arrange proofreading by a native English speaker before submission. Submitted manuscripts should contain a concise and informative title; the name(s) ofthe author(s); the affiliation(s) and address (es) of the author(s); the e-mail address and telephonenumber(s) of the corresponding author. Contributions are received with the understanding that they comprise of original, unpublished material and have not been submitted/considered for publication elsewhere. All submissions should be sent electronically as email attachment to fudijoss@gmail.com. Submissions must be accompanied with evidence of payment of an assessment fee of N10,000 or 25 (USD). Manuscripts are accepted throughout the year.

Abstract

A concise abstract of not more than two hundred and fifty (250) words and to be followed immediately by four to six (4-6) keywords which should not be a repetition of the title. The abstract should not contain any undefined abbreviations or unspecified references.

Text

Manuscripts should be typed, double spaced in MS Word for Windows format, font size 12, Times New Roman with 2.5cm margins, and organized under appropriate section headings. All headings should be placed on the left-hand side of the text. All figures, tables, etc. should be inserted at the appropriate locations in the text. Only three levels of headings are accepted in the text. All measurements should be given in metric units. Acknowledgements may be made brieflyjust before the list of references only on the revised final manuscript.

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

Tables and Figures

- a. All illustrations other than tables are to be numbered consecutively as Figures (e.g. graphs, drawing and photographs) using Arabic numerals.
- b. Photographs and other illustrations will be reproduced in black and white unless otherwise agreed with the editors. Only online versions of the article will appear in colour.
- c. All Figures and Tables are to be referred to in the text by their number.

Citations in Text

Cited references in the text are to be cited in the text using the surname(s) of the author(s) followed by the year of publication of the work referred to, for example: Mustafa (2019), (Ati, 2016), (Dimas & Akuva, 2020) or for references to page (Mustafa, 2020, p. 15). In case of more than two authors use name of first author followed by "et al." (Yecho et al., 2017). If several works are cited, they should be organized chronologically, starting with the oldest work.

References: Use the American Psychological Association (APA)StyleGeneral Guide The items in the reference list should be presented alphabetically with the last name of the author, followed by the author's initials.

Books

Abdulsalam A. Sikiru (2022) Research methods in Economic and Social Science, Lexinting Printing Press, Califonia, USA.

Obadahun O. Simon (2024) The Basics of Administration and Politics, ABU Press, Zaria, Kaduna State.

Badiru Abdulahi (2024) Introduction to Economics, Longman, London, UK.

Edited Book

McDowell, L. & Sharp, J. P. (Eds.) (1999). *A feminist glossary of human geography*. New York, NY: Oxford University Press.

Book Chapter

Abaje, I. B., Ati, O. F. & Iguisi, E. O. (2012). Changing Climatic Scenarios and Strategies for Drought Adaptation and Mitigation in the Sudano-Sahelian Ecological Zone of Nigeria. In Iliya, M. A., & Dankani, I. M. (Eds). *Climate Change and Sustainable Development in Nigeria* (pp 99–121). Ibadan: Crown F. Publishers.

Journal Articles

Dimas, G. & Akuva, I. I. (2020). Leadership styles of Nelson Mandela as a pattern for African leaders. *Covenant University International Journal of Politics and International Affairs*, 8(1), 49-64.

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

Journal Article Accessed Online

Bayer, J. (2010). Customer segmentation in the telecommunications industry. *Journal of Database Marketing & Customer Strategy Management*, 17,247 – 256. doi: 10.1057/dbm.2010.21

Corporate Author

Institute of Chartered Accountants in Australia. (2004). AASB standards for 2005: equivalents to IFRSs as at August 2004. Sydney, Australia: Pearson Education.

All correspondences and enquiries should be directed to:The Editor-in-Chief FUDMA International Journal of Social SciencesFaculty of Social Sciences Federal University Dutsin-Ma, Katsina State, NigeriaEmail:fudijoss@gmail.com

Publication Fee

Publication fee is \$\frac{\text{\tint{\text{\tint{\text{\tint{\text{\tint{\text{\te}\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi}\text{\text{\text{\text{\text{\texi}\text{\text{\texi}\text{\texitile}}\text{\text{\texit{\texi{\texi{\texi{\texi{\texi{\texi}\texi{\texit{\texi{\texi}\tinz{\texi{\texi{\texi{\texi{\texi{\texi{\texi{\texi

Subscriptions and Marketing

Three issues of FUDIJOSS would be published per year, in April, September and December, by the Faculty of Social Sciences, Federal University Dutsin-Ma, Katsina State, Nigeria. **Annual subscriptions** (2023): Nigeria, №10,000 (Individuals), №15,000 (Institutions). Outside, 35 (USD)(Individuals); 100 (USD) (Institutions). Single Issues (2023): Nigeria №5,000 (Individuals) №8,000 (Institutions). Outside, 25 (USD) (Individuals); 65 (USD) (Institutions).

For advertising and other marketing details, contact:
The Business Editor
FUDMA International Journal of Social SciencesFaculty of Social Sciences
Federal University Dutsin-Ma, Katsina State, Nigeria Email:fudijoss@gmail.com

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

ASYMMETRIC EFFECTS OF FISCAL POLICY ON ECONOMIC DEVELOPMENT IN NIGERIA

Kazeem FASOYE

Department of Economics, College of Management and Social Sciences, Fountain University, Osogbo, Nigeria

Correspondence E-mail: <u>fasoye.kazeem@fuo.edu.ng</u>

Phone Number: 08038166046

&

Adekunle Dimeji ODEJIDE

Department of economics, Federal College of Education (Special) Oyo.

Email: Odejide.adekunle1847@fcesoyo.edu.ng

Phone Number: 08060987098

Abstract

The feasibility of fiscal policy in achieving economic stabilization is really a contending issue. The debate on the most suitable fiscal instrument for controlling the economy in the face of globalization has been dominated by various schools of thought. The paper investigates the asymmetric effects of fiscal policy instruments on economic development in Nigeria between 1981 and 2022. Annual secondary data on poverty rate, unemployment rate, real interest rate, human development index (HDI), debt-to- GDP ratio, revenue as a percentage of GDP, expenditure as a percentage of GDP, inflation rate and population rate of Nigeria were used. Data sourced from the World Development Indicators (WDI, 2023); International Monetary Fund (IMF, 2023), United Nations Development Programme (UNDP, 2023) and World Bank Group, (2023) were analysed using a Non-linear ARDL (NARDL) technique. The findings of the study reveal that shocks to government expenditure, revenue and debt have significant nonlinear impacts on unemployment rate, poverty rate and HDI in Nigeria. It is therefore concluded that fiscal policy instruments confer significant asymmetric effects on economic development in Nigeria. Also, it is recommended that policymakers should adopt expansionary fiscal policy during economic downturns to sustain low unemployment and poverty rates as well as low HDI.

Keywords: Asymmetric Fiscal Policy, Government revenue, Government spending, Nonlinear Effects and Nigeria.

JEL codes: E61, 011, C22, H30, 055

INTRODUCTION

Fiscal policy in Nigeria began under British colonial rule in the early 20th century and relied greatly on customs duties, indirect taxes as well as grants to finance administrative and military outlays. As an independent nation, Nigeria inherited these tax structures and at start ran modest surpluses throughout the 1960s. Thus, Fluctuating global oil price in the 1970s led to boombust Fiscal swings and suboptimal growth performance. To address Ffscal instability, Nigeria adopted the Structural Adjustment Program (SAP) in 1986, which included devaluation of the naira, subsidy removal, trade liberalization and privatization, however, these measures prompted

widespread social unrest and led to the introduction of Value Added Tax (VAT) in 1993 (Adeosun, Ayodele & Jongbo, 2021). The democratic era and institutional reForms in the

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

2000s improved Fiscal discipline and transparency, but expenditure patterns remained highly unstable (Aigheyisi & Edore, 2019). Since the 2010s, Nigeria has experienced rising public debt due to renewed oil volatility, infrastructure deficit and rising recurrent expenditure obligations (Olaniyi, 2020 & Ahmadu, 2021).

The debate on the most suitable fiscal policy instrument for controlling the economy in the face of globalization has been dominated by various schools of thought, with fiscal policy showing little short-term stabilization role (Obademi, 2018). This is not unconnected with the evidence that it gives priority to maintaining price stability over time. Fiscal policy is fundamental in driving economic development in Nigeria because it has been argued in literature that it can influence macroeconomic stability (batra & mahmood, 2018), infrastructure investment (Esfahani & Ramirez, 2023), human capital development (Psacharopoulos & Patrinos, 2018), poverty reduction (Banerjee, 2015) and inclusive growth (Aghion, 2019). Also, sound fiscal management, including prudent spending, revenue mobilization, and debt sustainability, stabilizes the economy and creates an investment-friendly environment towards achieving the desired level of economic development (Banerjee, 2015). A significant shift in government expenditure and taxation policy in developed countries led to a budget deficit and negatively impacts the balanced budget (Köktaş & Günel, 2022).

Though, Nigeria is the largest economy in Africa with a GDP of US\$506.6 billion in the year 2023 but greater proportion of the population of this country still live below the poverty line (IMF, 2023). The government as well as non-governmental organisations in Nigeria has undertaken several initiatives to drastically lessen the rate of poverty in the country at large. It was found out by Ogwumike, (2021) that erstwhile poverty reduction measures put in place in Nigeria primarily focus primarily on growth, basic necessities and development strategies of rural areas. The growth approach in the first instance is assumed to lay emphasis on rapid economic development through proper policy management, while the basic necessities approach encompasses on fundamental requirements and needs for the poor.

The impact of fiscal policy on Nigeria's economic development is increasingly important due to the country's economic volatility, dependence on oil exports, and vulnerability to external shocks. Fiscal policy, including government spending and taxation decisions, is used to stimulate growth, reduce unemployment, and stabilize macroeconomic conditions. However, the effectiveness of fiscal policy in Nigeria exhibits asymmetric effects, meaning it does not produce the same outcomes depending on the economy's expansion or recession. This is due to structural vulnerabilities, inflationary pressures, and external dependencies while the effects of fiscal policies are especially sensitive to the economic environment, with external shocks and monetary dynamics playing a critical role (Adebiyi, 2020).

Empirical studies have shown that fiscal policy in Nigeria has a significant impact on economic development, particularly in relation to the country's oil dependency and socioeconomic challenges. In periods of economic contraction, such as the 2008 global financial crisis and the

2016 recession, Fiscal stimulus can boost aggregate demand and stimulate economic growth (Akinlo, 2017). Public expenditure, such as infrastructure investments and social transfers, helps cushion the negative effects of global oil price shocks and contributes to faster recovery (Folawewo & Olalekan, 2018). However, during economic booms, fiscal policy in Nigeria often produces more limited benefits and may contribute to economic overheating, inflation, and public debt accumulation. This is due to Nigeria's heavily reliant economy on oil exports,

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

which can lead to excessive demand and inflation and fiscal policy during periods of strong growth can contribute to a crowding out effect, where government spending reduces private investment, failing to promote long-term growth (Folawewo & Olalekan, 2018).

As discussed earlier, Nigeria's fiscal policy is heavily influenced by its oil dependence, making it vulnerable to external shocks like Fluctuations in global oil prices (Köktaş & Günel, 2022). Oil price cycles shape the effectiveness of Fiscal policy, with declines leading to revenue shortfalls and high prices causing macroeconomic instability (Ogwumike, 2021). The country's heavy reliance on oil exports exacerbates the asymmetric effects of fiscal interventions while the effectiveness of fiscal policy is also influenced by the coordination between monetary and Fiscal policies ((Banerjee, 2015). Also, inflationary pressures can result from loose fiscal policies during economic expansion, while inadequate recovery can occur during recessions.

It is obvious that Nigeria's Fiscal history demonstrates asymmetric effects, with the impact of fiscal tools varying depending on regime, shock direction and macro context. Understanding these asymmetric effects is crucial due to oil-driven volatility, varied fiscal outcomes under different regimes, and evolving institutional contexts. Thus, the fiscal –economic development asymmetric relationship is yet unexplored, especially in Nigeria. As a result, the study investigates the asymmetric effects of fiscal policy on economic development in Nigeria. The remaining sections of this paper outline literature review in the section two, methodology is presented in the third section, the fourth section details the results and findings of the study while conclusion and recommendations are discussed in the fifth section.

LITERATURE REVIEW

Theoretical underpinning

The study is premised on Endogenous growth theory by Romer, (1986) which emerged as a critique of the traditional neoclassical growth models. The theory provides a strong theoretical foundation for understanding the asymmetric effects of fiscal policy, unlike neoclassical models which assume a country's long-run growth rate is determined by exogenous factors such as technological progress and population growth (Barro, 1990 & Rebelo, 1991). The theory posits that economic development is generated from within the economic system itself and can be influenced by government policies (Lucas, 1988).

Then, the "asymmetric" impact of fiscal policy instruments is rooted in this theory because the impact of a positive fiscal shock might not be equal and opposite to a negative shock. For instance, a spending increase on crucial infrastructure can bring about low rate of unemployment, poverty reduction and rising Human Development Index (HDI), while a spending cut may not have an equally strong negative effect if the private sector can pick up the slack. Equally, the way a

government finances its spending and the spending composition are key factors that the endogenous growth theory can help to explain.

Empirical Review

The two main instruments that the government uses to control an economy are monetary and fiscal policies. Musa, Asare, & Gulumbe, (2019) examined the effectiveness of monetary-fiscal policies in Nigeria's economy. They found that despite government revenue impacting growth, the unprecedented rise in general prices continues to eat deep into the economy. It is evidently clear from the result that the impact fiscal policy can confer on the economy rests on entirely

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

on the dominating monetary policy instrument at the moment. Similarly, there is no doubt that every expenditure decision of government is considerably premised on the available revenue – which is subject to the role of certain monetary policy instrument(s) in the economy. The study suggests a coordinated approach between fiscal and monetary policies for Nigeria's economic development, recognizing the dominant influence of these policies on economic activity dynamics. Also, Adebayo & Taiwo, (2025) employ an OLS regression data from 1986 - 2023 to show that a 1% increase in government expenditure leads to an 8.62% increase in GDP, while tax revenue and public debt effects are insignificant.

Fiscal policies have gained attention for regulating economies, but divergent views exist on which approach is better for smooth economic operation, as they impact employment and price stability in some countries amidst globalization. The feasibility of fiscal policy in achieving economic stabilization is really a contending issue. The debate on the most suitable fiscal policy instrument For controlling the economy in the face of globalization has been dominated by various schools of thought, with tax policy showing little short-term stabilization role (Obademi, 2018). This is not unconnected with the evidence that it gives priority to maintaining other fiscal variables over time. As a result, the study by Ijirshar, Akaakohol & Akaakohol (2021) uses the Nonlinear Autoregressive Distributed Lag (NARDL) model to examine the effects of government spending on economic growth in Nigeria and the Findings show that positive government spending positively impacts long-term economic growth, while negative cuts negatively impact it.

Fiscal policy is a financial tool employed to correct series of economic disturbances and restore the economy to its steady state. Sequel to the above, Ehinmilorin, Bamidele-Sadiq, Udonwa & Ekpeno, (2021) investigate the impact of fiscal policy on the rate of poverty in Nigeria. The results show that both tax and non-tax revenue of government are found to have impacted significantly the level of poverty on one side. Similarly, the balloons in oil revenue have attracted rising recurrent spending and led to expanded public structures vulnerable to corruption and leakage which reduce the marginal effectiveness of fiscal interventions. Thus, the structural overreliance on oil makes fiscal policy procyclical and less responsive to development-oriented objectives (Ewetan, Osabohien & Matthew, 2020). The implication of the findings is that the systemic impediments shape how fiscal policy shocks translate into growth outcomes in practice and therefore, asymmetric modeling yields improved empirical specificity.

On the other side, recurrent expenditure component is seen to have contributed immensely to poverty reduction in Nigeria than capital expenditure component. The need to augment

expenditure provision for general administration cannot be overemphasized as it is shown from the result that it has poverty reducing effect. Much emphasis is therefore on capital expenditure for its leading role in poverty reduction strategy due to its long-term strides in infrastructural development that would engender income generation and job creation opportunities. Again, Nigerian stock market performance indicates that fiscal policy changes have asymmetric effects on financial performance, with positive shocks enhancing stock valuations more than negative shocks, depending on sector or regime (Adeleke & Oyeleke, 2021). The results imply the need for exploring non-homogeneous impacts in macro sectors.

The government as well as non-governmental organisations in Nigeria has undertaken several initiatives to drastically lessen the rate of poverty in the country at large. It was found out by

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

Ogwumike, (2021) that erstwhile poverty reduction measures put in place in Nigeria primarily focus primarily on growth, basic necessities and development strategies of rural areas. The country's poverty reduction measures, categorized into pre-SAP, SAP, and democratic eras, include numerous programs and policies. However, the level of poverty remains high, indicating inefficiency or structural defects in the policies. It is germane to emphasize that the study fails to recognize that poverty reduction cannot only be achieved in isolation without having a sizeable number of gainfully employed individuals who are hitherto unemployed. The government's intervention and active participation in an economy is crucial for efficient resource allocation, benefiting the aggregate economy. This is as a result of market failure in which the forces of demand and supply are quite insufficient and ineffective in achieving macroeconomic objectives. One of the most essential instruments employed to influence macroeconomic performance in Nigeria is fiscal policy.

The asymmetric impact of fiscal policy variables on Nigeria's economic growth was investigated by YusuF & Mohd, (2021) and the results reveal that growth responds asymmetrically to recurrent expenditure, while petroleum profit tax and customs levies behave symmetrically but domestic and external debt have uneven long-term effects. Olaniyi & Odhiambo, (2023) use NARDL modeling to examine the asymmetric effects of fiscal deficits on macroeconomic stability in Nigeria. It was found out that in the short run, neither positive nor negative deficit shocks significantly affect GDP. Nevertheless, positive deficits can boost growth in the long run.

METHODOLOGY

In extant empirical literature such as Ewetan, Osabohien & Matthew, (2020); Adeosun, Ayodele & Jongbo, (2021) and Olaniyi & Odhiambo, (2023), economic development can be measured using certain macroeconomic variables which include unemployment rate, poverty rate and Human Development Index (HDI). The study examines the asymmetric impact of fiscal policy on Nigeria's economic development variables. This is done by separating positive and negative shock effects, using modified work of Afandi, Wahyuni & Sriyana, (2019). Also, the theoretical underpinning for this study posits that economic development is generated from within the economic system itself and can be influenced by government policies, following this theoretical position, the baseline model for the study is

$$ECD = f(F)$$
 1

Where, ECD comprises the 3 measures of economic development (Unemployment rate, poverty

rate and HDI) while F connotes the 3 basic fiscal variables (expenditure, revenue and debt). The study adopts a three- equation model and the each of the models is presented in an estimable form as

Model 1: Unemployment

$$UNE_t = \alpha_0 + \alpha_1 F_t + \alpha_2 POP_t + \alpha_3 INT_t + \varepsilon_{1t}$$
 2a

Where, UNE_t is the unemployment, total (% of total labour force) and F_t implies fiscal policy variables comprising expenditure (EXP_t) revenue (REV_t) and debt (DBT_t) .

That is,
$$F_t = \alpha_{11}EXP_t + \alpha_{12}REV_t + \alpha_{13}DBT_t$$

Model 2: Poverty

$$POV_t = \beta_0 + \beta_1 F_t + \beta_2 POP_t + \beta_3 INF_t + \varepsilon_{2t}$$
 2b

Where, POV_t is poverty rate (measured by multi-dimensional poverty index)

Model 3: Human Development Index (HDI)

$$HDI_t = \varphi_1 + \beta_1 F_t + \varphi_2 POP_t + \varphi_3 INF_t + \varepsilon_{3t}$$
 2c

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

Where, HDI_t is the Human Development Index (HDI) – ranges from 0 to 1- which measures a country's performance in national human development, with higher values indicating better outcomes.

The paper uses the Non-linear Autoregressive Distributed Lag (NARDL) model to examine the asymmetric impact of fiscal policy instruments on economic development. The model captures potential short- and long-run asymmetries, allowing for separate analysis of the effects of positive and negative changes on dependent variables as

$$F_{t}^{+} = \sum_{i=1}^{p} \Delta F_{t}^{+} = \sum_{i=1}^{p} Max(\Delta F_{t}^{+}, 0)$$

$$F_{t}^{-} = \sum_{i=1}^{p} \Delta F_{t}^{-} = \sum_{i=1}^{p} Min(\Delta F_{t}^{-}, 0)$$
3b

It is assumed that the effects of $F_t > 0$ (positive) could be different from the effects of $F_t < 0$ (negative). Thus, asymmetric cointegration becomes

Model 1: Unemployment

$$UNE_t = \alpha_0 + \alpha_1^+ F_t^+ + \alpha_2^- F_t^- + \alpha_3 POP_t + \alpha_4 INT_t + \varepsilon_{1t}$$
 4a

$$POV_t = \beta_0 + \beta_1^+ F_t^+ + \beta_2^- F_t^- + \beta_3 POP_t + \beta_4 INF_t + \varepsilon_{2t}$$
Model 3: Human Development Index (HDI)

$$H_t = \varphi_1 + \varphi_1^{+} F_t^{+} + \varphi_2^{-} F_t^{-} + \varphi_3 POP_t + \varphi_4 INF_t + \varepsilon_{3t}$$
 4c

 $H_t = \varphi_1 + \varphi_1^+ F_t^+ + \varphi_2^- F_t^- + \varphi_3 POP_t + \varphi_4 INF_t + \varepsilon_{3t}$ 4c Then, by incorporating the economic development variables used in this study, equations 4a to c become

Model 1: Unemployment

$$\Delta UNE_{t} = \alpha_{0} + \sum_{\substack{i=0 \\ p_{4}}}^{P_{1}} \alpha_{1i} \ \Delta UNE_{t-1} + \sum_{\substack{i=0 \\ p_{5}}}^{P_{2}} \alpha_{2i}^{+} \Delta F_{t-1}^{+} + \sum_{\substack{i=0 \\ p_{5}}}^{P_{3}} \alpha_{3i}^{-} \Delta F_{t-1}^{-} \\ + \sum_{\substack{i=0 \\ p_{4}}}^{P_{4}} \alpha_{4i} \Delta POP_{t-1} + \sum_{\substack{i=0 \\ i=0}}^{P_{2}} \alpha_{5i} \Delta INT_{t-1} + \rho_{0} UNE_{t-1} + \rho_{1}^{+} F_{t-1}^{+} + \rho_{2}^{-} F_{t-1}^{-} \\ + \rho_{3} POP_{t} + \rho_{4} INT_{t}^{-} + \varepsilon_{1t} \\ \text{Model 2: Poverty}$$
 5a Model 2: Poverty

$$\Delta POV_{t} = \alpha_{0} + \sum_{\substack{i=0 \\ p_{4}}}^{P_{1}} \alpha_{1i} \ \Delta POV_{t-1} + \sum_{\substack{i=0 \\ p_{5}}}^{P_{2}} \alpha_{2i}^{+} \Delta F_{t-1}^{+} + \sum_{\substack{i=0 \\ p_{5}}}^{P_{3}} \alpha_{3i}^{-} \Delta F_{t-1}^{-} + \sum_{\substack{i=0 \\ + \rho_{3}POP_{t-1} + \rho_{4}INF_{t} + \epsilon_{2t}}}^{P_{2}} \alpha_{5i} \Delta INF_{t-1} + \rho_{0}POV_{t-1} + \rho_{1}^{+}F_{t-1}^{+} + \rho_{2}^{-}F_{t-1}^{-} + \rho_{3}POP_{t} + \rho_{4}INF_{t} + \epsilon_{2t}$$
 5b Model 3: Human Development Index (HDI)

$$\Delta HDI_{t} = \alpha_{0} + \sum_{\substack{i=0 \ p_{5}}}^{P_{1}} \alpha_{1i} \ \Delta HDI_{t-1} + \sum_{\substack{i=0 \ p_{5}}}^{P_{2}} \alpha_{2i}^{+} \Delta F_{t-1}^{+} + \sum_{\substack{i=0 \ p_{5}}}^{P_{3}} \alpha_{3i}^{-} \Delta F_{t-1}^{-} + \sum_{\substack{i=0 \ p_{5}}}^{P_{4}} \alpha_{4i} \Delta POP_{t-1}$$

$$+ \sum_{\substack{i=0 \ p_{5}}}^{P_{4}} \alpha_{5i} \Delta INF_{t-1} + \rho_{0} HDI_{t-1} + \rho_{1}^{+} F_{t-1}^{+} + \rho_{2}^{-} F_{t-1}^{-} + \rho_{3} POP_{t}^{-} + \rho_{4} INT_{t}^{-}$$

$$+ \varepsilon_{3t}$$

$$5c$$

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

From the right hand side, the first part of the equations (5a-c) with $\sum_{i=0}^{P_i} \alpha_i$ indicate the short run component while remaining part is the long run component, where, $\alpha_1 - \alpha_4$ are short run coefficients estimated and $\rho_1 - \rho_3$ are estimable long run coefficients. After estimating equations 5a to c, then, the following assumptions were tested for the purpose of this analysis.

- i. Short-run adjustment asymmetry are inferred if the following ΔF_t^+ and ΔF_t^- take different lag orders respectively;
- ii. Short run asymmetric impacts are manifested if they occur at the similar lag order i, the estimate of α_{2i}^+ is different from the estimate of α_{3i}^- ;
- iii. Short run cumulative asymmetric effects are established if $\sum \hat{\alpha}_{2i}^{+} \neq \sum \hat{\alpha}_{3i}^{-}$;
- iv. Long run asymmetric impact is inferred if the normalized long-run estimates obtained for all the decomposed partial cumulative sums of positive are different from their respective negative changes i.e. $\frac{\hat{\rho}_1}{-\rho_0}^+ \neq \frac{\hat{\rho}_2}{-\rho_0}^-$

The Following equations were used for estimating asymmetric dynamic multiplier effects:

$$K_{b^{+}} = \sum_{J=0}^{b} \frac{\partial UNE_{t+j}}{\partial F_{t}^{+}}, \quad K_{b^{-}} = \sum_{J=0}^{b} \frac{\partial UNE_{t+j}}{\partial F_{t}^{-}}, b = 1, 2, 3 \dots \dots$$
 6a
$$K_{b^{+}} = \sum_{J=0}^{b} \frac{\partial POV_{t+j}}{\partial F_{t}^{+}}, \quad K_{b^{-}} = \sum_{J=0}^{b} \frac{\partial POV_{t+j}}{\partial F_{t}^{-}}, b = 1, 2, 3 \dots \dots$$
 6b

$$K_{b^{+}} = \sum_{l=0}^{b} \frac{\partial HDI_{t+j}}{\partial F_{t}^{+}}, \quad K_{b^{-}} = \sum_{l=0}^{b} \frac{\partial HDI_{t+j}}{\partial F_{t}^{-}}, b = 1, 2, 3 \dots \dots$$
 6c

Noting that $b \to \infty$, $K_{b^+} \to \theta_1^+$ and $K_{b^-} \to \theta_2^-$

Data Sources

Annual secondary data on poverty rate, unemployment rate, real interest rate, human development index (HDI), debt-to- GDP ratio, revenue as a percentage of GDP, expenditure as a percentage of GDP, inflation rate and population rate of Nigeria from 1981 to 2022 were used. The data were sourced from the World Development Indicators (WDI, 2023); International Monetary Fund (IMF, 2023), United Nations Development Programme (UNDP, 2023) and World Bank Group, (2023).

RESULTS AND FINDINGS

Descriptive Statistics

This section examines the summary statistical features of the data over the period of study (1981 to 2022) to examine the statistical properties of the variables used in this study. The study examines the mean, median, maximum value, minimum value, standard deviation, skewness, kurtosis and Jarque Bera (p-values) descriptive features of variables of interest before employing econometric estimation. Table 1 reports the overview of all the variables

Table 1: Descriptive statistics Results

Variable	Mean	Median	Max	Min.	Std. Dev.	Skewness	Kurtosis	JB P- value
EXP	20.37	16.78	50.95	9.760	10.69	1.590	22.23	0.0515
REV	14.94	15.23	28.80	5.116	5.998	0.328	1.470	0.4794
DBT	59.14	39.48	193.67	7.280	54.09	0.848	5.302	0.0700

Vol. 5, No. 2, September, 2025

ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

UNE	5.169	3.9743	22.60	3.710	3.217	4.128	7.45	0.1230
POV	0.221	0.1780	0.536	0.009	0.170	0.535	3.967	0.1375
HDI	0.486	0.4841	0.538	0.378	0.038	-0.692	3.603	0.1649
INT	2.929	1.9031	6.778	0.627	2.109	0.557	4.957	0.0838
INF	14.58	13.502	25.01	2.387	6.573	0.085	2.521	0.2834
POP	2.612	2.5942	3.002	2.380	0.126	0.712	4.999	0.0821

Note: EXP, REV, DBT, UNE, POV, HDI, POP and INT represent expenditure as a % of GDP, revenue as a % of GDP, Debt-to-GDP ratio, unemployment rate, Multidimensional Poverty Index, Human Development Index, population growth rate interest paid on public debt and inflation rate respectively.

Source: Authors' Computation From the data extracted From International Monetary Fund (IMF, 2023), World Bank Group, (2023), World Development Indicators (WDI, 2023) and United Nations Development Programme (UNDP, 2023).

The REV has its median value marginally above the mean value and it implies that the values of these variables Fall to the left tail of probability density in a bell-shaped curve. The variable DBT is more dispersed in as it exhibits a very high variability with the standard deviation values of 54.09. Again, HDI has the least standard deviation value of 0.038 and this suggests that the data are less dispersed; implying there is less variation in the data and that they are reasonably stable and less volatile. However, the remaining variables show that data are moderately close together as there is evidence of minimal variability in their respective indices Therefore, it appears From Table 1 that all of the variables used in the analysis have a normal distribution. The JB (P-values) results suggest that the data are normally distributed and suitable for further analysis. In conclusion, the results of the summary statistics reveal that the statistical properties of the variables used for analysis are considered to be consistent, pretty stable and less volatile (because they exhibit evidence of minimal variability). Also, the data distributions are not symmetric but are normally distributed. The implication of this is that the data can be used for further analysis.

The results of asymmetric effects of fiscal policy on economic development in Nigeria are presented in Table 2.

Table 2: Results of asymmetric effects of fiscal policy on economic development

Method: Nor	1-Linear	ARD L M	lodel	-						
Model	1a (3, 2, 1	1, 1)	Model	2a (3, 3, 1,	1)	Model 3	3a (2, 3, 1	l , 1)		
Variable Co- P-value			Variab Co- P-value			Variable	P-			
	eff.		le ef	f.				value		
Dep. Va	ariable: U	JNE	Dep. V	ariable: PC	V	Dep. Va	ariable: I	HDI		
Short Run Estimate										
							-			
		0.082			0.008		0.190	0.096		
$\mathbf{D}(EXP^+)$	0.5744	5	$\mathbf{D}(EXP^+)$	0.0216	4	$\mathbf{D}(EXP^+)$	1	9		
							-			
$D(EXP^+(-$	-	0.022		-	0.004	$D(EXP^+($	0.066	0.083		
1))	2.2344	7	$\mathbf{D}(EXP^+(-1))$	0.0096	4	-1))	1	5		
$D(EXP^+(-$	_	0.015	$D(EXP^+(-2))$	-	0.024	$D(EXP^+)$	-	0.048		

Vol. 5, No. 2, September, 2025

ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

Integrity & SERVICE								
2))	1.4213	9		0.0652	2	-2))		7
$D(EXP^+(-$	_	0.042		_	0.011		0.013	0.021
3))	1.7088	1	$D(EXP^{+}(-3))$	0.0288	4	$\mathbf{D}(EXP^{-})$	3	9
		0.145			0.019	$D(EXP^{-}($		
			$\mathbf{D}(EXP^{-})$				7	0
$\mathbf{D}(\mathbf{EXP}^{-}(-$	-	0.069	$\mathbf{D}(EXP^{-}(-1))$		0.053	$\mathbf{D}(\mathbf{EXP}^{-}($	0.009	0.013
1))	0.2308	1	$\mathbf{D}(EXP^{-}(-1))$	0.0225	4	-2))	7	6
D(EXP (-	0.7422	0.036	$\mathbf{D}(EXP^{-}(-2))$	0.0314	0.071	D(EXP)	0.002	0.152
2))	0.7422	Ü	D(LXI (-2))				_	
		0.000			0.009		0.100	0.012
DPOP	0.1092	6	$D(EXP^{-}(-3))$	0.0410	6	DPOP	2	6
		0.050			0.001		-	0.000
DINT	0.0125	0.052	DPOP	1 2067	0.001	DINE	0.232	0.090
DINI	0.0125	0	DPOP		0.002	DINF	3	0
Note:			DINF	2.8725	6			
Model 1	b (3, 2, 1,	1)	DINF Model 21	b (3, 2, 1,	1)	Model 3	b (3, 3, 1	1, 1)
							-	
		0.082	$\mathbf{D}(REV^+)$		0.020		0.030	0.035
$\mathbf{D}(REV^+)$	1.7269	7	$\mathbf{D}(REV^+)$	0.1184	2	$\mathbf{D}(REV^+)$	2	2
$D(REV^+(-$		0.053			0.033	D(<i>REV</i> ⁺ (-	0.054	0.042
1))	5.0501	8	$\mathbf{D}(REV^+(-1))$	0.0112	8	1))	9	2
							-	
$\mathbf{D}(REV^{+}(-$		0.059	$\mathbf{D}(REV^{+}(-2))$		0.020	$\mathbf{D}(REV^{+}(-$	0.009	
2))	1.6418	9	$\mathbf{D}(REV^+(-2))$	0.0786	0	2))	3	3
D(<i>DEV</i> +(_		0.010			0.030	D(DFV+(_	0.010	0.042
3))	2.9273	6	$\mathbf{D}(REV^{+}(-3))$	0.1524	6.030	3))	6	0.042
• • • • • • • • • • • • • • • • • • • •	-	0.019	2(1127 (3))	-	0.045		0.020	0.007
$\mathbf{D}(REV^{-})$	1.3018	2	$\mathbf{D}(REV^{-})$					
$\mathbf{D}(REV^{-}(-$		0.051				$\mathbf{D}(REV^{-}(-$		
1))	3.2460	7	$\mathbf{D}(REV^{-}(-1))$	0.0010	1	1))	7	9
$D(REV^{-}(-$	_	0.062			0.000	D (<i>REV</i> ⁻ (-	0.052	0.055
2))			$\mathbf{D}(REV^{-}(-2))$			2))		0.033
- //	1.0021	1	D(RZ7 (2))	0.1001	O	-))	-	Ü
		0.011				$\mathbf{D}(REV^{-}(\mathbf{-}$	0.047	0.041
DPOP	2.1022	6	DPOP	0.1920	6	3))	4	8
		0.150			0.000		0.100	0.000
DINT	0.2325	0.152	DINF	0.1205	0.008		0.109 4	0.000 9
	0.2323	U	DIM	0.1203	U	DIOI	-	,
							0.015	0.002
						DINF	2	6
	c (2, 3, 1,		Model 20 D(<i>DBT</i> ⁺)			Model 3		

Vol. 5, No. 2, September, 2025

ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

WEGRITY & SERVICE								FUDIN
		4			6		5	8
$D(DBT^{+}(-$		0.046			0.020	$\mathbf{D}(DBT^{+}($	0.002	0.011
1))			$\mathbf{D}(DBT^+(-1))$			-1))		5
1))	0.7037	3	D(DD1 (-1))	0.0170	2	-1))	-	3
$D(DBT^{+}(-$		0.058		_	0.026	$\mathbf{D}(\mathbf{DBT}^{+}($	0.002	0.000
2))			$\mathbf{D}(DBT^+(-2))$			-2))		5
-//	-	0.082	_((-		$\mathbf{D}(\mathbf{DBT}^{+}($		
$\mathbf{D}(DBT^{-})$	0.5532		$D(DBT^+(-3))$	0.0177		-3))		2
,			, ,,			,,		
$D(DBT^{-}(-$	-	0.088		-	0.024		0.000	0.025
1))	0.5511	5	$\mathbf{D}(DBT^{-})$	0.0155	0	$\mathbf{D}(DBT^{-})$	6	0
	-	0.016			0.092	$\mathbf{D}(DBT^{-}($	0.002	0.021
$D(DBT^2)$	0.3210	5	$\mathbf{D}(DBT^{-}(-1))$	0.0030	4	-1))	1	4
$D(DBT^{-}(-$	-	0.300		-	0.023	$D(DBT^{-}$	0.000	0.081
3))	0.1542	1	$D(DBT^2)$			2))	3	6
			$D(DBT^{-}(-$		0.059		2.022	0.000
DPOP	1.1032	4	3))	0.0010	6	DPOP	1	8
		0.004			0.040		- 0.100	0.022
DINT	0.1000	0.004	DDOD	2.1056	0.040	DINE	0.108	
DINT	0.1099	6	DPOP	2.1056		DINF	7	6
			DINF	0.1562	0.004			
		0.088	Long Rur	i Estillau				0.057
EXP^+	0.2881	9		0.0393	0.0701	EXP^+	0.0101	4
LAI	0.2001	0.050		0.0373	0.0701	LAI	0.0101	0.031
EXP^-	0.1943	1		0.0233	0.0150	EXP^-	0.0033	
	0.17 .0	0.022		-	0.0100		0.0000	0.041
REV^+	-1.8044	5		0.0102	0.0352	REV^+	0.0029	0
		0.023		-				0.087
REV^-	-3.0262	5	REV^-	0.0360	0.0259	REV^-	0.0045	8
		0.078						0.000
DBT^+	-0.0821	6		0.0063	0.0232	DBT^+	0.0018	1
		0.085						0.000
DBT^-	-0.0612	8		0.0017	0.0214	DBT^{-}	0.0007	3
DOD.	6 F035	0.096		-	0.0615	DOD	- 0.0150	0.025
POP	-6.5927	8	POP	0.0415	0.0617	POP	0.2152	2
TATEL	0.1000	0.003	TATES	0.1000	0.0776	INIE	1 1002	0.004
INT	0.1929	0.005	INF	0.1099	0.0776	INF	1.1002	2
C	6.7797	0.005	C	4.0458	0.0325	\mathbf{C}	1.3785	0.015
	0.7797	3	C	4.0430	0.0323	C	1.3/03	3

Source: Author's estimations

The results in Table 2 above contain the short run estimates (in the first three upper components) and the long run estimates (in the last component). The short run estimates reveal the asymmetric effects of each of fiscal variables (expenditure, revenue and debt) on each of the economic development variables (unemployment rate, poverty rate and HDI). The lag lengths for each of the models (1a,b,c to 3a,b,c) are all indicated just above the results in Table

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

Results from Table 2 For Model 1 show that the signs of D(EXP⁺) coefficients are mostly negative at different magnitudes. This shows that the effects of a positive shock to government expenditure on unemployment in Nigeria vary in the short run. These effects were found to be statistically significant. Also, the cumulative effects of the positive shocks to government expenditure on unemployment in Nigeria were found to be negative in the short run. Again, the signs of D(EXP⁻)

coefficients are varied with dissimilar magnitudes and are statistically significant at different levels. The cumulative effects of the negative shocks to the government expenditure on unemployment are positive.

Furthermore, the results show that the effect of a positive shock to government revenue {D(REV⁺)} on unemployment in Nigeria was Found to be positive. All these effects were found to be statistically significant. Also, the cumulative effects of the positive shocks to the government revenue on unemployment appeared be positive in the short run. Again, the coefficients of D(REV⁻) are different in signs but with different magnitudes and statistically significant at different levels. The cumulative effects of the negative shocks to the government revenue on unemployment were found to be positive in the short run.

The third fiscal variable in the model is debt-to-GDP ratio (DBT), it is revealed that the estimates the signs of D(DBT⁺) coefficients are all positive with different magnitudes. This shows that, in the short run, the effects of positive shocks to government debt on unemployment in Nigeria were found to be positive and these effects are statistically significant. Also, the cumulative effects of the positive shocks to the government debt on unemployment appeared positive in the short run. Again, the coefficients of D(DBT⁻) are all negative and with different magnitudes and statistically significant at different levels. The cumulative effects of the negative shocks to the government revenue on unemployment were found to be positive in the short run. It is also shown that population growth rates (DPOP) and interest rate (DINT) confer significant positive relationship on unemployment in each of the three models in the short run. Again, population growth rate (POP) showed an estimated co-efficient of -6.5927. This implies that a 1% increase in population growth rate leads to 6.5927% fall in unemployment rate in Nigeria. The co-efficient is statistically significant at 1% level. This implies that an increase in population growth can lead to a decrease in unemployment.

In Model 2 Table 2, it is quite apparent that the coefficients of D(EXP⁺) are mostly negative but at diverse magnitudes. This shows that, in the short run, the effects of positive shocks to government expenditure on poverty in Nigeria are negative. Also, the cumulative effects of the positive shocks to government expenditure on poverty level in Indonesia are negative in the short run. Conversely, the signs of D(EXP⁻) coefficients are all positive with different magnitudes. The cumulative effects of the negative shocks to the government expenditure on poverty rate are found to be negative in the short run.

Similarly, the results show that the estimates the signs of D(REV⁺) coefficients are all positive and with different magnitudes. This shows that, in the short run, the effect of positive shocks to government revenue on poverty level in Nigeria was found to be positive. All these effects were found to be statistically significant. Then, the cumulative effects of the positive shocks to the government revenue on poverty appeared positive in the short run. Again, the signs of D(REV⁻) coefficients are all negative but with different magnitudes and statistically significant

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

at different levels. The cumulative effects of the negative shocks to the government revenue on poverty are found to be positive in the short run.

Again, the coefficients of D(DBT⁺) are negative with different magnitudes. This shows that, in the short run, the effects of positive shocks to government debt on poverty in Nigeria were found to be negative and these effects are statistically significant. Also, the cumulative effects of the positive shocks to the government debt on poverty were found to be negative in the short run. Again, the signs of D(DBT-) coefficients are mostly negative and with different magnitudes and statistically significant at different levels. The cumulative effects of the negative shocks to the government debt on poverty in Nigeria were found to be positive in the short run. It is equally revealed that population growth rates (DPOP) and inflation rate (DINF) confer significant positive relationship on poverty level in each of the three models in the short run. Contrary to the short run estimates, the results of the long run estimates depict that a positive shock to government expenditure confers a negative non-linear impact on poverty while a negative shock to government expenditure confers a positive non-linear impact on poverty level in Nigeria. The results of the long run estimates of debt-to-GDP ratio indicate a significant positive relationship between shocks to government debt and poverty in Nigeria. The results reveal that both positive and negative shocks to government debt confer a significant positive non-linear impact on poverty level.

In Model 3 Table 2, it is glaringly clear that the coefficients of D(EXP⁺) are all negative but at different magnitudes. This shows that, in the short run, the effects of positive shocks to government expenditure on HDI in Nigeria are negative. Also, the cumulative effects of the positive shocks to government expenditure on HDI in Nigeria are negative in the short run. Also, the signs of D(EXP-) coefficients are all positive with different magnitudes. The cumulative effects of the negative shocks to the government expenditure on HDI are found to be negative in the short run. Moreover, the signs of the coefficients D(REV⁺) are all negative with different magnitudes while the cumulative effects of the positive shocks to the government revenue on HDI in Nigeria were found to be negative in the short run. Again, the signs of D(REV-) coefficients are both positive and negative but with different magnitudes and statistically significant at different levels. The cumulative effects of the negative shocks to the government revenue on HDI were found to be negative in the short run. The results for the estimates of the signs of D(DBT⁺) coefficients are both positive and negative with different magnitudes. Also, the cumulative effects of the positive shocks to the government debt on HDI appeared positive in the short run. Again, the coefficients of D(DBT) are all positive and with different magnitudes and statistically significant at different levels. The cumulative effects of the negative shocks to the government debt on HDI in Nigeria were found to be positive in the short run. Again, population growth rates (DPOP) and inflation rate (DINT) confer significant negative relationship on HDI in each of the three models in the short run.

Again, the results of the long run estimates indicate significant negative relationship between shocks to government expenditure and HDI in Nigeria. The results reveal that both positive and negative shocks to government expenditure confer a significant negative non-linear impact on HDI in Nigeria. Also, the results of the long run estimates indicate a significant positive relationship between shocks to government revenue and HDI in Nigeria. The results reveal that both positive and negative shocks to government revenue confer a significant positive non-linear impact on HDI in Nigeria.

THIVERSITY OF THE PARTY OF THE

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

Discussion of Results

The results indicate a positive relationship between shocks to government expenditure and unemployment in Nigeria. The results reveal that both the positive and negative shocks to government expenditure confer a significant positive non-linear impact on unemployment. This implies that a positive shock to government expenditure can enhance economic activity through increased demand, infrastructure investment and job creation. While a negative shock to unemployment can result in an unexpected decline in unemployment rates due to increased hiring, enhanced economic conditions and or effective government policies. This is in line with the Keynesian economics which suggests that increased government expenditure boosts aggregate demand, leading to increased production and employment in Nigeria.

The analysis of debt-to-GDP ratio point out a significant negative relationship between shocks to debt and unemployment. It is shown that both positive and negative shocks to public debt confer a significant negative non-linear impact on unemployment in Nigeria. This implies that positive shocks from debt can arise from expansionary fiscal policies, which soar up spending or diminish taxes to stimulate economic activity. These policies can initially reduce unemployment by creating jobs through public projects or indirectly by boosting demand. However, the negative non-linear impact suggests that further increases may have diminishing returns due to concerns about Fiscal sustainability, potential crowding out of private investment, or inflationary pressures. Also, excessive reliance on debt-financed stimulus without corresponding increases in productivity or revenue generation can lead to long-term economic imbalances, undermining employment prospects in Nigeria. The results are in consonance with the conclusion of Reinhart and Rogoff, (2020) which suggest a nonlinear relationship between public debt levels and economic development, with positive effects on growth when debt levels are low and negative when they increase.

The results imply that in Nigeria, a positive shock to government expenditure can initially lead to poverty reduction through increased spending on social programs and infrastructure development. However, this may diminish over time due to factors like inefficiencies, corruption, and infrastructure inefficiency. Beyond a certain threshold, excessive spending could exacerbate poverty levels, leading to inflationary pressures, fiscal deficits, and macroeconomic instability. Conversely, a negative shock to government expenditure could exacerbate poverty levels by reducing access to essential social programs and public services. In the long run, reduced government expenditure could become less severe or even positive, if fiscal consolidation measures lead to improved macroeconomic stability, reduced inflation, and increased investor confidence. Over the long term, communities and individuals may adapt to changes in government expenditure patterns, Finding alternative income sources or social support. The results are in consonant with the findings of **Saraireh**, (2020) which show that public spending and poverty rate are interrelated; and that any increase in public expenditure decreases the poverty rate in the long run.

Again, on the asymmetric effect of revenue on economic development, the results indicate a significant positive relationship between shocks to government revenue and poverty in Nigeria. It is revealed that both positive and negative shocks to government revenue confer a significant

positive non-linear impact on poverty level. The implication of the results is that the association between government revenue shocks and poverty in Nigeria is not insignificant, with both positive and negative shocks having a non-linear impact. Positive shocks provide the government with additional resources to invest in social programmes, infrastructure, and

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

poverty alleviation initiatives. However, in the long run, the impact may diminish due to inefficiencies, corruption, or failure to generate sustainable economic growth. Negative shocks may lead to inflation, fiscal mismanagement, and economic distortions. Nigeria, heavily reliant on government revenue, should diversify revenue sources, improve fiscal management, invest in human capital, and strengthen social safety nets to mitigate economic shocks and promote inclusive growth. The results are in line with findings of Musa, Asare & Gulumbe, (2019) which found out that despite government revenue impacting growth, the unprecedented rise in general prices continues to eat deep into the economy.

Again, the study reveals a positive relationship between government revenue shocks and the Human Development Index (HDI), suggesting that increased revenue can positively impact human development outcomes in Nigeria. Higher government revenue allows states to allocate resources to essential public services, such as education, healthcare, infrastructure, and social welfare programmes, towards fostering economic growth, improving quality of life, and addressing social inequalities. The study emphasizes the importance of implementing policies that enhance revenue mobilization and fiscal capacity, such as broadening the tax base and diversifying revenue sources. It also emphasizes the need for sustainable fiscal policies to maintain macroeconomic stability. Overall, the study underscores the importance of government revenue mobilization and fiscal policy in promoting human development outcomes in Nigeria. The results are in line with findings of the work of Adekola & Asaleye, (2020) which highlight the crucial role of stable fiscal policies in enhancing economic development in Nigeria.

It is equally implied that positive shocks to debt-to GDP ratio can provide the Nigeria's government with additional funds to invest in poverty alleviation programmes, social services and infrastructure development. However, in the long run, the impact may diminish due to debt sustainability concerns. Also, potential negative effects may include macroeconomic instability, inflationary pressures, and reduced investor confidence. Again, negative shocks may lead to austerity measures, spending cuts, and reduced investment in social programmes and in the long run, the negative impact may persist. In the same vein, the positive relationship between inflation rate and poverty level indicate that the higher the rate of inflation the lower the peoples purchasing power and the higher the rate of poverty and vice versa. These support the Findings of Boskin, (2020) which conclude that increases in the debt-to-GDP ratio and high inflation rate may result in greater taxes and decreased future earnings and low standard of living as well as rise in poverty rate.

The negative relationship between government spending shocks and the Human Development Index (HDI) indicates suboptimal effectiveness and efficiency of public spending in Nigeria. The non-linear impact suggests that the impact of government expenditure shocks on HDI is not uniform across all levels of expenditure changes. The findings emphasize the importance of Fiscal sustainability and prudent Fiscal management in Nigeria. The results are in line with findings of

Farayibi & Owuru, (2022) long-term impact of ineffective public spending can undermine economic performance if it is not optimally utilized.

In the same vein, there exists a significant positive relationship between shocks to public debt and HDI in Nigeria. The results reveal that both positive and negative shocks to public debt confer a significant positive non-linear impact on HDI in Nigeria. The study reveals a positive

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

relationship between public debt shocks and the Human Development Index (HDI), suggesting that public debt can be used as a financing tool for investments in human capital, infrastructure, and social services. The study emphasizes the importance of prioritizing investments in key sectors that directly impact human development outcomes. The findings suggest that Nigeria can harness the positive impact of public debt on HDI and accelerate progress towards sustainable development goals. The findings are supported by the conclusion of the work of Nasa, (2019) that higher debt-to-GDP ratios lead to lower long-term growth rates, while lower ratios promote economic development, signifying a positive association between debt and economic development. Also, the negative relationship between inflation rate and HDI indicate that inflation can negatively impact life expectancy by increasing healthcare costs and leading to malnutrition, especially in food prices, which can be less accessible to the poor masses.

Dynamic Multiplier Graphs of NARDL Estimates of Model 1

The Dynamic Multiplier graphs of NARDL estimates of the three threshold variables in Model 1 are presented in the Figure 1.

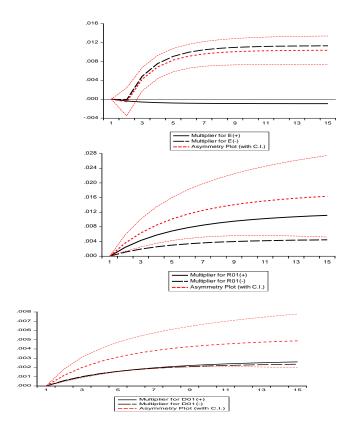


Figure 1: Dynamic Multiplier Graphs of NARDL Estimates of Fiscal Policy Instruments of Model 1

Source: Authors' graphical illustration

From Figure 1(i), the study reveals asymmetric relationship between Nigeria's unemployment adjustment and negative and positive shocks of expenditure (EXP), indicating an asymmetry between unemployment and government expenditure. On the contrary, from Figure 1 (ii), the results reveal that Nigeria's unemployment rate (UNE) indicates no evidence of asymmetry in the relationship with government revenue. Similarly, the results of asymmetric unemployment

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

adjustment to positive and negative debt – to - GDP (DBT) shocks is shown in Figure 1 (iii) by the DBT-negative and positive shocks. The study reveals that in Nigeria, the relationship between debt-to-GDP and unemployment rate is not asymmetric in both short and long terms, indicating a consistent response to shocks.

Dynamic Multiplier Graphs of NARDL Estimates of Model 2

The Dynamic Multiplier graphs of NARDL estimates of the three threshold variables in Model 2 are presented in the Figure 2.

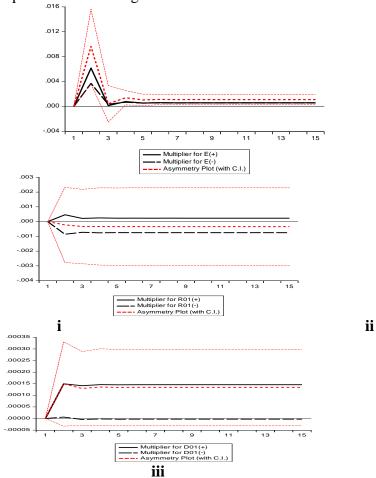


Figure 2: Dynamic Multiplier Graphs of NARDL Estimates of Fiscal Policy Instruments of Model 2

Source: Authors' graphical illustration

Figure 2(i) reveals asymmetric relationship between Nigeria's poverty rate adjustment and expenditure shocks, showing that POV responds proportionally to both short and long-term shocks from EXP. This indicates that there is no evidence of asymmetry in both short- and long run relationships between government expenditure and poverty rate in Nigeria. On the contrary, Figure 2 (ii) shows asymmetry between poverty rate and government revenue in Nigeria, with positive REV components negatively impacting POV and negative components positively impacting POV in both short and long run. In the same vein, the results of asymmetric unemployment adjustment to positive and negative debt-to-GDP (DBT) shocks is shown in Figure 2 (iii) by the DBT-negative and positive shocks. The study shows that Nigeria's debt-to-GDP ratio reacts more to positive shocks in both short and long terms, indicating a stable and predictable fiscal policy in the long run, despite no evidence of asymmetry in the short and

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

Dynamic Multiplier Graphs of NARDL Estimates of Model 3

The Dynamic Multiplier graphs of NARDL estimates of the three threshold variables in Model 3 are presented in the Figure 3.

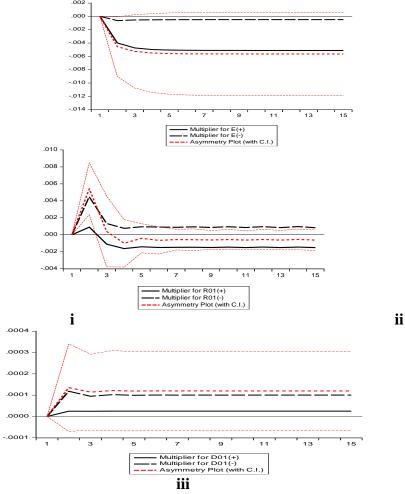


Figure 3: Dynamic Multiplier Graphs of NARDL Estimates of Fiscal Policy Instruments of Model 3

Source: Authors' graphical illustration

It is indicated from Figure 3(i) that Nigeria's Human Development Index (HDI) adjusts more significantly to positive shocks from government expenditure (EXP) than negative shocks in both short and long run, indicating no evidence of asymmetry in the relationship between government expenditure and HDI. On the contrary, Figure 3 (ii) shows asymmetry between the Human Development Index and government revenue in Nigeria, with both positive and negative components of REV negatively impacting HDI, indicating a long-term imbalance in the relationship. Again, the results of asymmetric HDI adjustment to positive and negative debt-to-GDP (DBT) shocks is shown in Figure 3 (iii) by the DBT-negative and positive shocks. The study shows that in Nigeria, the debt-to-GDP ratio (DBT) reacts more to negative shocks than positive shocks, indicating no asymmetry in the relationship between these variables.

Diagnostic Tests for the Non-linear ARDL

Diagnostic tests were conducted on the Non-linear version of ARDL for the three models to ensure its reliability, and they include residual diagnostic tests of normality, serial correlation,

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

heteroskedascity, and Ramsey RESET test. The results are presented in Table 3.

Table 3: Diagnostic tests results of Non-linear ARDL

Diagnostic Tests	Model 1		Model	12	Mod	el 3
Jarque-Bera Test for	0.5463	(0.7609)	0.7659	(0.6818)	0.2289	(0.8829)
Normality						
Breusch-Godfrey Serial	9.3096	(0.1517)	0.8717	(0.4591)	2.4755	(0.2318)
Correlation LM Test						
Ramsey RESET Test	6.7830	(0.3700)	0.2391	(0.6380)	8.3972	(0.2200)
Heteroskedasticity						
Test:Breusch-Pagan-	0.2595	(0.9921)	0.6995	(0.7752)	0.5004	(0.8934)
Godfrey						

Source: Authors' estimation

The Jarque-Bera test for Normality assesses the normality of residuals in regression models for ensuring data skewness and kurtosis match a normal distribution. If p-values exceed 0.05, the null hypothesis (H_0) is accepted, indicating regression models' reliability. Alternative approaches may be considered for validity. The Breusch-Godfrey Serial Correlation LM Test detects serial correlation in regression model residuals, ensuring accurate regression coefficient estimation. Ramsey's RESET test assesses specification error in regression models, confirming linear specification is adequate. These tests enhance regression analysis reliability, allowing accurate coefficient interpretation, reliable predictions, and confident hypothesis testing. The Breusch-Pagan-Godfrey Heteroskedasticity test confirms the absence of heteroskedasticity in the three models, indicating unbiased and consistent estimators since the test statistic's p-value is greater than a suitable threshold of (p < 0.05). Thus, the diagnostic tests on the Non-linear version of ARDL models show no issues with serial correlation, heteroscedasticity and normality.

CONCLUSION

The findings of this paper indicate that positive government expenditure shocks stimulate economic activity by stimulating aggregate demand, promoting infrastructure development, and job creation while negative unemployment shocks suggest improved hiring practices, favorable economic conditions, or proactive government interventions can effectively reduce unemployment. Also, excessive fiscal policies financed by public debt initially reduce unemployment but may become counterproductive, leading to fiscal sustainability concerns and inflationary pressures. Moreover, Nigeria's government revenue shocks considerably impact poverty, with positive shocks reducing poverty through public investments, while negative shocks exacerbate it through inflation and fiscal constraints. Rising government expenditure, revenue and debt in Nigeria positively impacts human development indicators like education, healthcare and social welfare towards enhancing sustained growth and development. It is therefore concluded that fiscal policy instruments confer significant asymmetric effects on economic development in Nigeria. Following the findings of this paper, it is recommended that policymakers should adopt expansionary fiscal policy during economic downturns to sustain low unemployment and poverty rates as well as low HDI. Also, a prudent debt management strategy is suggested to balance fiscal stimulus with long-term sustainability, while revenue diversification beyond oil to improve tax administration, and encourage sector expansion is encouraged.

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

REFERENCES

- Adebayo, A. I. & Taiwo, I. B. (2025). Convergence of Fiscal Policy and Economic Growth in Nigeria. Journal of Social and Development Sciences, 15(1S), 1–13. https://doi.org/10.22610/jsds.v15i1(S).4368
- Adebiyi, M. A. (2020). Monetary and fiscal policy coordination in Nigeria: An empirical analysis. *African Journal of Economic Review*, 8(3), 154-178.
- Adekola, O. D., & Asaleye, S. (2020). Impact of human capital development on poverty alleviation in Nigeria. *International Journal of Economics Management Sciences*, 7(544).
- Adeosun, O. A., Ayodele, O. S. & Jongbo, O. C. (2021). Policy asymmetries and fiscal sustainability: evidence from Nigeria. *African Journal of Economic and Management Studies*, 12(2), 302–320.
- Afandi, A., Wahyuni, D., & Sriyana, J. (2019). Policies to eliminate poverty rate in Indonesia.

International Journal of Economics and Financial Issues, 7(1), 435 - 441.

- Aghion, P. (2019). The economics of growth. MIT Press. 129 160.
- Ahmadu, M. A. (2021). Asymmetric relationship between Budget Deficit and Economic Growth in Nigeria. *Chiang Mai University Journal of Economics*, 2(6), 23 41.
- Aigheyisi, O. S. & Edore, J. O. (2019). Asymmetric effects of money supply growth on economic growth in Nigeria. *EuroEconomica*, 38(2), 36 50.
- Akinlo, A. E. (2017). Fiscal policy and economic growth in Nigeria: A counter-cyclical approach. *Journal of Economic Policy and Development*, 29(4), 112-130.
- Banerjee, A. (2015). Poor economics: A radical rethinking of the way to fight global poverty. *Public Affairs*, 7(2), 43 52.
- Barro, R. J. (1990). Government spending in a simple model of endogenous growth. *Journal of Political Economy*, 98(5), S103-S125.
- Batra, G., & Mahmood, B. (2018). Emerging markets and the global economy: A handbook. *Academic Press*, 44 54.
- Boskin, M. (2020). Are large deficits and debt dangerous? NBER Working Paper No. 26727.
- Ehinmilorin, E., Bamidele-Sadiq, M., Udonwa, U. E., & Ekpeno, D. R. (2021). Fiscal policy and poverty reduction: The Nigerian perspective. *International Journal of Business and Social Science*, 12 (4), 63 77.
- Esfahani, H. S., & Ramirez, M. T. (2023). Institutions, infrastructure, and economic growth. *Journal of Development Economics*, 70(2), 443-477.

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

- Ewetan, O. A., Osabohien, R. & Matthew, O. O. (2020). Fiscal policy and macroeconomic performance in Nigeria: A re-examination of the evidence, *African Journal of Economic and Management Studies*, 3(2), 16 30.
- Farayibi, A. O., & Owuru, J. E. (2022). Linkage between fiscal policy and poverty reduction in Nigeria. Nigerian Institute for Social and Economic Research (NISER) & Centre for
- Allied Research & Economic Development, Ibadan. carednetwork@gmail.com.
- Folawewo, A. O., & Olalekan, M. (2018). Pro-cyclical fiscal policies and economic development in Nigeria. *International Journal of Economics and Finance*, 10(2), 45-58.
- Ijirshar, V. U., Akaakohol, B. M. & Akaakohol, I. A. (2021). Asymmetric effects of government spending on economic growth in Nigeria. *Anyigba Journal of Arts & Humanities*, 15(1), 205–215.
- IMF, (2023). International Monetary Fund World Economic Outlook Database. [Online] Available at: www.imf.org/external/pubs/ft/weo/2016/01/we0data.
- Köktaş, A. M., & Günel, T. (2022). Impact of fiscal rules on government expenditure and tax revenue in emerging European countries: Threshold effect of budget deficit. *Ekonomický Časopis*, 70(3), 264 283
- Lucas Jr, R. E. (1988). On the mechanics of economic development. *Journal of Monetary* \ *Economics*, 22(1), 3-42.
- Musa, Y., Asare, B. K., & Gulumbe, S. U. (2019). Effect of monetary-fiscal policies interaction on price and output growth in Nigeria. *CBN Journal of Applied Statistics*, ISSN 2476-8472. The Central bank of Nigeria, Abuja, 4 (1), 55 74.
- Obademi, O. E. (2018). Taking a second look at Nigeria's economic stabilisation policies. *International Journal of Development and Management Review (INJODEMAR)*, 3(1), 121 127.
- Odusola, A. F., & Ogundipe, O. S. (2020). Fiscal response to COVID-19 in Nigeria: Implications for economic recovery. *Global Economics Review*, 10(3), 203-218.
- Ogun, F. (2020). Fiscal deficits and economic growth: The Nigerian experience. *International Journal of Economic Perspectives*, 12(1), 98-110.
- Ogwumike, F. O. (2001). Appraisal of poverty and poverty reduction strategies in Nigeria. *CBN Economic and Financial Review.* 39(4), 45-71.
- Olaniyi, C. O. & Odhiambo, N. M. (2023). The asymmetric effect of fiscal deficits on macroeconomic stability in Nigeria: Evidence from Nonlinear Autoregressive Distributed Lag (NARDL). *International Trade, Politics and Development*, 8(3), 144–164.

Vol. 5, No. 2, September, 2025 ISSN: 2735-9522 (Print) ISSN: 2735-9530 (Online)

- Olaniyi, C. O. (2020). Application of Bootstrap Simulation and asymmetric causal approach to fiscal deficit—inflation nexus. *Journal of Quantitative Economics*, 3(4), 1 20.
- Psacharopoulos, G., & Patrinos, H. A. (2018). Returns to investment in education: A decennial review of the global literature. *Education Economics*, 26(5), 445 458.
- Rebelo, S. (1991). Long-run policy analysis and long-run growth. *Journal of Political Economy*, 99(3), 500-521.
- Reinhart, C. M., & Rogoff, K. S. (2020). Growth in a time of debt. *American Economic Review*, 100(2), 573–578.
- Romer, P. M. (1986). Increasing returns and long-run growth. *Journal of Political Economy*, *J* 94(5), 1002-1037.
- Saraireh, S. (2020). The impact of government expenditures on unemployment: A case study of Mexico. *The American Economic Review*, 72(3), 76 97.
- United Nations Development Programme (UNDP, 2023). 2023 Global Multidimensional Poverty Index (MPI): Unstacking global poverty: Data for high impact action. New York.
- World Bank, (2023). World Development Indicators (WDI).

World Bank. (2023). Indonesia economic prospects: navigating

Uncertainty. https://www.worldbank.org/en/country/indonesia/publication/indonesia-economic-prospects-navigating-uncertainty.

Yusuf, A. & Mohd, S. (2021). Asymmetric impact of fiscal policy variables on economic growth in Nigeria. *Journal of Sustainable Finance & Investment*, 2(2), 32–52.